Einfache und effiziente Inbetriebnahme und Test von Embedded Systemen

Pascal Willems (Presentation & Live Demo)
Embedded Computing Conference Winterthur
5. Juni 2018
FlowCAD – Your EDA-Partner
Moore’s Law was published on April 19, 1965 by Gordon E. Moore, who was working as the director of R&D at Fairchild Semiconductor.

The complexity of electronic circuits doubles approx. every 2 years:
(Number of constraints)
Products / Solutions for Electronic Engineers

Solutions
- PCB Layout
- PSpice - Simulation
- SI- and PI-Simulation
- Multiphysics Simulation
- Thermal Simulation
- Timing Analyse
- 3D mCAD-eCAD Integration
- Reliability (MTBF, FTA, FMEA)
- CAM Verification
- Boundary Scan Test
- CAD-Flow Management
- PLM and ERP-Interfaces
Focus on Customer Satisfaction

Sales
• Fair, competent advice
• Long term solutions

Support
• Hotline, netviewer
• Survey

Service
• PCB Design Services
• (Layout, simulation, migration)

Training
• Training centers, on-site
• Workshops
Einfache und effiziente Inbetriebnahme und Test von Embedded Systemen

Pascal Willems (Presentation & Live Demo)
Embedded Computing Conference Winterthur
5. Juni 2018
Why testing?
Test Technologies I

• Automated Optical Inspection (AOI)
 – Automated visual inspection of PCBs, using a camera to check for missing/misplaced components and quality defects with soldering or skewed components

• Automated X-ray Inspection (AXI)
 – The only other technology which can ‘see’ under BGA pins
 – Usually used in conjunction with a technology that actually checks physical operation of the board

Test Capabilities
 – Non-contact test
 – Can observe
 – solder quality
 – component skew problems

Limitations
 – Access to BGAs
 – Speed and access limits
 – No functional testing and programming
 – Ambiguous results
Test Technologies II

• Functional Circuit Test (FCT)
 – The oldest type of testing
 – Use the functionality of devices in the circuit to test the circuit as a whole

Test Capabilities
 – Tests devices at the full operating speed
 – Can be used in conjunction with test fixtures to get good test coverage

Limitations
 – Requires minimum functionality or tests will not run
 – Requires programming into board
 – May affect available space for board firmware
 – Failure diagnosis can be difficult
 – Long development time
Test Technologies III

• Bed-of-nails / In-Circuit Test (ICT)
 – State of the art, since the mid-1970s
 – Electrical probe test of a populated PCB

• Flying Probe (FPT)
 – Introduced in 1986, to provide an easy to use and dependable fixtureless tester for the manufacturing world

Test Capabilities
 – Checks for shorts, opens, resistance, capacitance to show whether the assembly was correctly fabricated

Limitations
 – Access to BGAs
 – Space on PCB for test points
 – High NRE / fixture costs (ICT)
 – Long test times (flying probe)
Test Technologies III

- Boundary Scan
JTAG / Boundary-Scan Testing – Benefits

• Designed to minimise access difficulties
 – 4 / 5 pin interface
 – Gives access to the whole device
 – JTAG devices connect to form a chain

• Abstracted from device and board complexity
 – No need to know what type of CPU core, or even whether the device is a CPU, FPGA, CPLD, RAM, PHY, etc.
 – Much reduced need for test points

• Test non-JTAG devices through the JTAG ones
 – Test or program most types of device by controlling the pins from a JTAG device
What is JTAG?

Each Boundary-Scan Cell can:

- Capture data on its parallel input PI
- Update data onto its parallel output PO
- Serially scan data from SO to its neighbour’s SI
- Behave transparently: PI passes to PO

Note: Boundary-scan cells represent virtual test points for the access to some nets.
JTAG / Boundary-Scan Testing – History

- **1985**: JETAG formed
- **1986**: JTAG replaces JETAG
- **1990**: JTAG / Boundary-Scan Testing – History
- **2003**: 1149.6 includes AC-coupled nets
- **2010**: 1149.7 includes two-wire JTAG
- **2013**: 1149.1-2013 revision
Boundary-Scan Versus Other Test Methods

<table>
<thead>
<tr>
<th>TEST METHODOLOGIES</th>
<th>Initial Investment Cost</th>
<th>Cost per Project</th>
<th>Test Speed</th>
<th>Memory Programming Speed & Capacity</th>
<th>FPGA/CPLD Programming & Testing</th>
<th>CPU/MCU Oriented</th>
<th>DFT Oriented</th>
<th>Electric Testing</th>
<th>Functional Testing</th>
<th>BGA Fault Diagnostics</th>
<th>Optical Aspect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand-alone Boundary Scan Test (BST)</td>
<td>-</td>
</tr>
<tr>
<td>Automated Test Equipment</td>
<td></td>
</tr>
<tr>
<td>In-Circuit Test (ICT)</td>
<td>-</td>
</tr>
<tr>
<td>Flying Probe Test (FPT)</td>
<td>-</td>
</tr>
<tr>
<td>Functional Circuit Test (FCT)</td>
<td>-</td>
</tr>
<tr>
<td>Automated Optical Inspection (AOI)</td>
<td>-</td>
</tr>
<tr>
<td>Automated X-Ray Inspection (AXI)</td>
<td>-</td>
</tr>
</tbody>
</table>
What kind of error can be detected?
Extended Testing
Prototype bring-up

No Test Program needed
JTAG – getting it right

JTAG comes with some conditions

• You have to connect it - laws of physics still apply

• Signal integrity is important
 – For test time
 – For reliability
 – For programming speed

• There may be pins which need to be accessible
 – May need access to set the device into JTAG mode

• Design and layout of the JTAG signals makes a difference
 – Getting it wrong can double (or worse) the time taken to test each PCB
JTAG / Boundary-Scan IEEE 1149.1

Multiple devices connected to form a JTAG chain
Check Termination

Multiple devices connected to form a JTAG Chain
XJTAG DFT Assistant

- App (plug-in, add-on) to check the connection and termination of the Taps and show the test coverage for:
 - OrCAD
 - Allegro (CIS)
 - Mentor Pads
 - Mentor Expedition
 - Zuken CR8000
 - Altium
XJTAG DFT Assistant

• Getting the JTAG design right
 – XJTAG Chain Checker identifies
 – Connection Errors
 – Termination issues
 – Compliance pin problems

• Reviewing the design’s testability
 – XJTAG Access Viewer shows accessibility from JTAG
 – Shown on schematic in OrCAD Capture
Which steps are needed in DFT Assistant

• Select the BSDL Files
 – BSDL Files are Text Files that come from the Chip Vendor

• Define the TAP connections

• Categories the components
 – Mainly automatic with a few mouse clicks
Reporting in XJTAG DFT Assistant

Result of the JTAG-Chain check
XJTAG Access Viewer

Colored Nets show the test coverage
Where to find DFT Assistent

• OrCAD Capture
• Allegro CIS
• Mentor Pads
• Mentor Expedition
• Zuken CR8000
• Altium

https://www.xjtag.com/products/software/eda/

Or: Google helps… (mostly)
• DFT Assistant inside Capture
• XJAnalyser
Questions?
Follow us

www.facebook.com/FlowCAD
Join our Facebook page where we focus on giving a glimpse into ongoing innovations. You will find selected news, events, success stories and insights.

www.twitter.com/FlowCAD
On FlowCAD’s Twitter we provide press releases, news articles, films and images as well as reports from events.

www.youtube.com/FlowCAD
On our YouTube channel you will find 100+ video tutorials to learn more about electronic circuits. With the PSpice Lite version from our website everyone can easily simulate. In our playlists we also offer product news and webinars.

Don’t forget to subscribe, share and like!
Kontakt zu FlowCAD / Contact us

Für weitere Fragen und Informationen stehen wir gerne zur Verfügung. Please don’t hesitate to contact us.

FlowCAD Deutschland
Mozartstr. 2
85622 Feldkirchen bei München
T +49 89 4563-7770
F +49 89 4563-7790
info@FlowCAD.de

FlowCAD Schweiz
Hintermättlistr. 1
5506 Mägenwil
T +41 56 485 91 91
F +41 56 485 91 95
info@FlowCAD.ch

FlowCAD Polen
ulica Sasiedzka 2A
80-298 Gdansk
T +48 58 732 74 77
F +48 58 732 72 37
info@FlowCAD.pl
Thank you!